Aspect-Aware Latent Factor Model: Rating Prediction with Ratings and Reviews

نویسندگان

  • Zhiyong Cheng
  • Ying Ding
  • Lei Zhu
  • Mohan S. Kankanhalli
چکیده

Although latent factor models (e.g., matrix factorization) achieve good accuracy in rating prediction, they suffer from several problems including cold-start, non-transparency, and suboptimal recommendation for local users or items. In this paper, we employ textual review information with ratings to tackle these limitations. Firstly, we apply a proposed aspect-aware topic model (ATM) on the review text to model user preferences and item features from different aspects, and estimate the aspect importance of a user towards an item. The aspect importance is then integrated into a novel aspect-aware latent factor model (ALFM), which learns user’s and item’s latent factors based on ratings. In particular, ALFM introduces a weighted matrix to associate those latent factors with the same set of aspects discovered by ATM, such that the latent factors could be used to estimate aspect ratings. Finally, the overall rating is computed via a linear combination of the aspect ratings, which are weighted by the corresponding aspect importance. To this end, our model could alleviate the data sparsity problem and gain good interpretability for recommendation. Besides, an aspect rating is weighted by an aspect importance, which is dependent on the targeted user’s preferences and targeted item’s features. Therefore, it is expected that the proposed method can model a user’s preferences on an item more accurately for each user-item pair locally. Comprehensive experimental studies have been conducted on 19 datasets from Amazon and Yelp 2017 Challenge dataset. Results show that our method achieves significant improvement compared with strong baseline methods, especially for users with only few ratings. Moreover, our model could interpret the recommendation results in depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspect Mining with Rating Bias

Due to the personalized needs for specific aspect evaluation on product quality, these years have witnessed a boom of researches on aspect rating prediction, whose goal is to extract ad hoc aspects from online reviews and predict rating or opinion on each aspect. Most of the existing works on aspect rating prediction have a basic assumption that the overall rating is the average score of aspect...

متن کامل

Rating Prediction with Topic Gradient Descent Method for Matrix Factorization in Recommendation

In many online review sites or social media, the users are encouraged to assign a numeric rating and write a textual review as feedback to each product that they have bought. Based on users’ history of feedbacks, recommender systems predict how they assesses the unpurchased products to further discover the ones that they may like and buy in future. A traditional approach to predict the unknown ...

متن کامل

Collaborative Multi-Level Embedding Learning from Reviews for Rating Prediction

We investigate the problem of personalized reviewbased rating prediction which aims at predicting users’ ratings for items that they have not evaluated by using their historical reviews and ratings. Most of existing methods solve this problem by integrating topic model and latent factor model to learn interpretable user and items factors. However, these methods cannot utilize word local context...

متن کامل

Joint Author Sentiment Topic Model

Traditional works in sentiment analysis and aspect rating prediction do not take author preferences and writing style into account during rating prediction of reviews. In this work, we introduce Joint Author Sentiment Topic Model (JAST), a generative process of writing a review by an author. Authors have different topic preferences, ‘emotional’ attachment to topics, writing style based on the d...

متن کامل

Restaurants Review Star Prediction for Yelp Dataset

Yelp connects people to great local businesses. In this paper, we focus on the reviews for restaurants. We aim to predict the rating for a restaurant from previous information, such as the review text, the user’s review histories, as well as the restaurant’s statistic. We investigate the data set provided by Yelp Dataset Challenge round 5. In this project, we will predict the star(rating) of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07938  شماره 

صفحات  -

تاریخ انتشار 2018